ht-09 uppg 20

Diskussioner kring NOG-delen samt NOG-uppgifter
annikaL
Stammis
Stammis
Inlägg: 116
Blev medlem: fre 16 okt, 2009 15:34

ht-09 uppg 20

Inläggav annikaL » ons 06 jan, 2010 15:11

Jag har problem med denna:

ABCD är en rektangel. Punkterna B och C ligger på kurvan y=k•x2 där k är en konstant. Bestäm värdet på konstanten k.


(1) Omkretsen av ABCD är 10 längdenheter.

(2) A har koordinaten (–2, 0) och D har koordinaten (2, 0).

Tyvärr kom inte bilden med, men den föreställer en rektangel med en u-kurva på.

url=http://www8.umu.se/edmeas/hprov/09b/nog

Jag har ingen som helst aning om hur jag ska göra med denna uppgift men rätt svar är c. behöver verkligen hjälp här!!

Bluejay1
Newbie-postare
Newbie-postare
Inlägg: 37
Blev medlem: sön 29 mar, 2009 13:54

Re: ht-09 uppg 20

Inläggav Bluejay1 » ons 06 jan, 2010 15:22

Hej Annika!

För att bestämma konstanten k behöver vi känna till en koordinat som ligger på parabeln y=kx^2!

Informationen i I) säger att omkretsen på rektangeln är 10 längdenheter. Vi kan kalla den långa sidan för x och den korta sidan för y i vår rektangel och får då en formel för omkretsen, nämligen 2x+2y=10

Informationen i II) ger oss koordinaterna för rektangelns nedersta två hörn. Med hjälp av dessa kan vi räkna ut rektangelns längd (avståndet mellan punkten A och D). När vi känner längden kan vi lösa ut höjden för rektangeln i informationen från I). X-koordinaterna för punkten A och B respektive C och D är samma.

Bluejay1
Newbie-postare
Newbie-postare
Inlägg: 37
Blev medlem: sön 29 mar, 2009 13:54

Re: ht-09 uppg 20

Inläggav Bluejay1 » ons 06 jan, 2010 15:28

Kort sagt räknar vi fram längden |AD| som går mellan -2 och 2 (längden är alltså fyra längdenheter).

Stoppa sedan in längden i ekvationen från I) 2*4+2y=10 <=> y=1. Nu känner vi till koordinaterna för B och C (-2,1) och (2,1). Notera att båda ligger på parabeln y=kx^2. Vilken koordinat av B och C som vi väljer när vi beräknar k spelar således ingen roll.

(2,1) => 1=k*2^2 <=> k=1/4

annikaL
Stammis
Stammis
Inlägg: 116
Blev medlem: fre 16 okt, 2009 15:34

Re: ht-09 uppg 20

Inläggav annikaL » tor 07 jan, 2010 11:07

tusen tack!

Bluejay1
Newbie-postare
Newbie-postare
Inlägg: 37
Blev medlem: sön 29 mar, 2009 13:54

Re: ht-09 uppg 20

Inläggav Bluejay1 » tor 07 jan, 2010 15:28

Hoppas att förklaringen är tydlig nog:)

dfmangotree
Newbie-postare
Newbie-postare
Inlägg: 75
Blev medlem: ons 30 apr, 2008 19:41

Re: ht-09 uppg 20

Inläggav dfmangotree » sön 10 okt, 2010 23:36

Jag blir alltid förbryllad när det kommer till linjer och koordinater..

Vad är det som gör att man bara behöver en av koordinaterna för att bestämma k här? Om man bara har en koordinat, då kan ju linjen vara rak eller lite hur som helst. man brukar väl behöva 2 olika punkter för att bestämma en linjes lutning?? :?

Användarvisningsbild
Flow91
Bronspostare
Bronspostare
Inlägg: 676
Blev medlem: fre 12 sep, 2008 23:31

Re: ht-09 uppg 20

Inläggav Flow91 » mån 11 okt, 2010 0:01

Vi måste ha koordinaterna för C och B för att bestämma K. Det är ju en andragradskurva som du säkert ser.

dfmangotree
Newbie-postare
Newbie-postare
Inlägg: 75
Blev medlem: ons 30 apr, 2008 19:41

Re: ht-09 uppg 20

Inläggav dfmangotree » mån 11 okt, 2010 1:12

Inte enligt tidigare svar. Vill du förklara närmre?

Användarvisningsbild
Flow91
Bronspostare
Bronspostare
Inlägg: 676
Blev medlem: fre 12 sep, 2008 23:31

Re: ht-09 uppg 20

Inläggav Flow91 » mån 11 okt, 2010 1:19

dfmangotree skrev:Inte enligt tidigare svar. Vill du förklara närmre?
Jo. Det är ju det de tog reda på. Koordinaten för C. :roll:

Ricin
Stammis
Stammis
Inlägg: 233
Blev medlem: tis 04 maj, 2010 11:50

Re: ht-09 uppg 20

Inläggav Ricin » mån 11 okt, 2010 1:40

dfmangotree skrev: Vad är det som gör att man bara behöver en av koordinaterna för att bestämma k här? Om man bara har en koordinat, då kan ju linjen vara rak eller lite hur som helst. man brukar väl behöva 2 olika punkter för att bestämma en linjes lutning?? :?
Om det handlar om räta linjer så behöver man bara veta en punkt om man vet konstanttermen (m-värdet). Annars måste man veta två punkter, alternativt k-värdet på en parallell linje (parallella linjer har samma k-värde). Det finns även en formel om vinkelräta linjer, vet dock inte om den behövs till HP. Den lyder k1 * k2 = -1. Så om två räta linjer är vinkelräta mot varandra och vi vet k-värdet på den ena kan man räkna ut k-värdet på den andra linjen.

Uppgiften som diskuteras här har följande ekvation
y = k*x(^2)
och man ska ta reda på k. Det spelar ingen roll vilken av koordinaterna B (-2,1) och C (2,1) du använder. Du kommer fortfarande få samma värde på k. Prova så får du se.

dfmangotree
Newbie-postare
Newbie-postare
Inlägg: 75
Blev medlem: ons 30 apr, 2008 19:41

Re: ht-09 uppg 20

Inläggav dfmangotree » mån 11 okt, 2010 12:37

Ricin skrev:Om det handlar om räta linjer så behöver man bara veta en punkt om man vet konstanttermen (m-värdet). Annars måste man veta två punkter, alternativt k-värdet på en parallell linje (parallella linjer har samma k-värde). Det finns även en formel om vinkelräta linjer, vet dock inte om den behövs till HP. Den lyder k1 * k2 = -1. Så om två räta linjer är vinkelräta mot varandra och vi vet k-värdet på den ena kan man räkna ut k-värdet på den andra linjen.

Uppgiften som diskuteras här har följande ekvation
y = k*x(^2)
och man ska ta reda på k. Det spelar ingen roll vilken av koordinaterna B (-2,1) och C (2,1) du använder. Du kommer fortfarande få samma värde på k. Prova så får du se.
Aha! bra förklaring :) tack så hemskt mycket!

Hur ser det ut när man räknar ut k-värdet genom 2 olika koordinater utan att man känner till m-värdet? Låt oss säga att vi har en koordinat som ligger på 1,3 och en som ligger på 3,9. Hur gör man?

Användarvisningsbild
Flow91
Bronspostare
Bronspostare
Inlägg: 676
Blev medlem: fre 12 sep, 2008 23:31

Re: ht-09 uppg 20

Inläggav Flow91 » mån 11 okt, 2010 12:44

dfmangotree skrev:
Ricin skrev:Om det handlar om räta linjer så behöver man bara veta en punkt om man vet konstanttermen (m-värdet). Annars måste man veta två punkter, alternativt k-värdet på en parallell linje (parallella linjer har samma k-värde). Det finns även en formel om vinkelräta linjer, vet dock inte om den behövs till HP. Den lyder k1 * k2 = -1. Så om två räta linjer är vinkelräta mot varandra och vi vet k-värdet på den ena kan man räkna ut k-värdet på den andra linjen.

Uppgiften som diskuteras här har följande ekvation
y = k*x(^2)
och man ska ta reda på k. Det spelar ingen roll vilken av koordinaterna B (-2,1) och C (2,1) du använder. Du kommer fortfarande få samma värde på k. Prova så får du se.
Aha! bra förklaring :) tack så hemskt mycket!

Hur ser det ut när man räknar ut k-värdet genom 2 olika koordinater utan att man känner till m-värdet? Låt oss säga att vi har en koordinat som ligger på 1,3 och en som ligger på 3,9. Hur gör man?
Rätlinje. Den allmäna formeln för den är: y=kx + m

När du ska beräkna k gör du så här:

(1,3) och (3,9)= (x1,y1) och (x2,y2)= y2 - y1/ x2 - x1= 9-3/3-1= 3

k är då 3.

chrahl
Newbie-postare
Newbie-postare
Inlägg: 25
Blev medlem: tor 09 dec, 2010 11:05

Re: ht-09 uppg 20

Inläggav chrahl » mån 07 mar, 2011 15:42

Det är en grej som jag hakat upp mig på som jag inte riktigt förstår med den här uppgiften. När man räknar ut längden på långsidan av rektangeln så måste man ju utgå från att ett steg i koordinatsystemet är lika långt som en längdenhet i omkretsen. Vad är det som egentligen säger att längdenheterna som omkretsen mäts i är lika långa som en längdenhet i koordinatsystemet? Skulle det inte kunna vara så att längdenheten i (1) är en helt annan storlek än den vi får ut i (2)?

Kanske är en dum fråga men det vore skönt att få klarhet i det här! ;)

gestir
Newbie-postare
Newbie-postare
Inlägg: 21
Blev medlem: lör 19 jan, 2013 23:35

Re: ht-09 uppg 20

Inläggav gestir » ons 13 feb, 2013 12:43

När du ska beräkna k gör du så här:

(1,3) och (3,9)= (x1,y1) och (x2,y2)= y2 - y1/ x2 - x1= 9-3/3-1= 3
Är inte detta formeln för m? Hittade den här formeln på nätet: m = (y2-y1)/(x2-x1)

Men man använder alltså samma formel för att räkna ut k?

Det andra jag undrar över är att om y = k*x^2 varför kan man inte bara sätta in värdena på variablerna och räkna ut formeln som vanligt?


cron
Intresseanmälan

Du är inte VIP-medlem. Lämna en intresseanmälan och få information helt gratis!

Dagens ord
NEOFILI
beundran för allt nytt
Nästa prov

14/4 - 2018 kl 8:10
144 dagar 7 timmar och 31 minuter kvar att förbereda sig på.

Sista anmälningsdag:
1/2 - 2018 kl 23:59

Utvalda forumtrådar