Konkreta tal

Diskussioner kring NOG-delen samt NOG-uppgifter
FreHel
Newbie-postare
Newbie-postare
Inlägg: 53
Blev medlem: tor 12 jul, 2007 13:21

Konkreta tal

Inläggav FreHel » mån 15 okt, 2007 13:43

Tre olika heltal är givna. Vilka är talen?
(1) Om de två minsta talen multipliceras blir produkten det tredje talet.
(2) Det näst största talet är hälften så stort som det största talet och 50% större än det minsta talet.

Går den att lösa och i såfall varför? :) MVH

Användarvisningsbild
DonThomaso
Silverpostare
Silverpostare
Inlägg: 1795
Blev medlem: sön 21 jan, 2007 1:00

Re: Konkreta tal

Inläggav DonThomaso » mån 15 okt, 2007 14:02

Nej det ser man ganska så direkt, eftersom vi endast får förhållandet mellan talen och inget värde så kan vi alltså inte räkna ut något värde heller. Summan av de tre talen skulle i princip kunna vara vilket tal som helst. :-P

Användarvisningsbild
Ascher
Bronspostare
Bronspostare
Inlägg: 563
Blev medlem: mån 27 mar, 2006 2:00
Ort: Göteborg

Re: Konkreta tal

Inläggav Ascher » mån 15 okt, 2007 14:11

Nu kanske jag är helt ute och cyklar men det här går väl ändå att lösa eller? Jag är urkass på att ställa upp ekvationer men jag får det till att talen är 2,3 och 6.
Om de två minsta talen istället skulle vara, säg 4 och 6 så skulle ju produkten bli 24 osv.
Förstår ni hur jag tänker?
Today is a gift, that's why we call it the present

Användarvisningsbild
rub
Bronspostare
Bronspostare
Inlägg: 884
Blev medlem: sön 11 sep, 2005 2:00

Re: Konkreta tal

Inläggav rub » mån 15 okt, 2007 14:12

ja jag tycker också att den går att lösa. B skulle jag nog svara på den iallafall

Användarvisningsbild
Ascher
Bronspostare
Bronspostare
Inlägg: 563
Blev medlem: mån 27 mar, 2006 2:00
Ort: Göteborg

Re: Konkreta tal

Inläggav Ascher » mån 15 okt, 2007 14:16

Njae C va? Eftersom annars kan ju talen vara i princip vilka som helst... (2,3,6 eller 4,6,12 osv.)
Today is a gift, that's why we call it the present

FreHel
Newbie-postare
Newbie-postare
Inlägg: 53
Blev medlem: tor 12 jul, 2007 13:21

Re: Konkreta tal

Inläggav FreHel » mån 15 okt, 2007 14:18

Var på kurs i sthlm för 2,0. Då kunde jag på intet vis få läraren att förstå att jag inte trodde att den kunde lösas då konkret tal saknades.
Han löste den typ för att han fick en potens i högerledet (x^2) och 2x i vänsterledet. Då kunde han ta bort ett x i höger- samt vänsterledet och endast få den återstående bokstaven till vänster samt siffran 2 till höger. Ungefär så gjorde han :) Suger det?

FreHel
Newbie-postare
Newbie-postare
Inlägg: 53
Blev medlem: tor 12 jul, 2007 13:21

Re: Konkreta tal

Inläggav FreHel » mån 15 okt, 2007 14:19

Det jag är ute efter är typ: man kan alltid lösa en uppg. utan konkret tal om det finns en multiplikation som måste utföras för att det ska stämma. hajar ni?

Användarvisningsbild
Ascher
Bronspostare
Bronspostare
Inlägg: 563
Blev medlem: mån 27 mar, 2006 2:00
Ort: Göteborg

Re: Konkreta tal

Inläggav Ascher » mån 15 okt, 2007 14:24

Ja, du är ute efter en regel? Vet inte om det finns någon sådan och ekvationer är jag som sagt kass på men jag tycker att man ser att den går att lösa eftersom produkten av de 2 minsta talen ska bli det största talet. För att det ska passa in i påstående 2 så kan det ju bara finnas en lösning...
Äsch jag kanske bara förvirrar dig ännu mer nu!

Men svaret var C iaf väl?
Today is a gift, that's why we call it the present

FreHel
Newbie-postare
Newbie-postare
Inlägg: 53
Blev medlem: tor 12 jul, 2007 13:21

Re: Konkreta tal

Inläggav FreHel » mån 15 okt, 2007 14:28

japp det ska vara C. Grejen är att jag kände spontant att den inte skulle gå att lösa eftersom vi inte hade något konkret tal men eftersom multiplikationen blandas in så blir det ju annorlunda. Går ju lätt att kolla i det här fallet också som tidigare gjordes i tråden.

Användarvisningsbild
CedriX
Stammis
Stammis
Inlägg: 430
Blev medlem: tis 28 aug, 2007 17:28

Re: Konkreta tal

Inläggav CedriX » mån 15 okt, 2007 14:29

Ascher skrev:Nu kanske jag är helt ute och cyklar men det här går väl ändå att lösa eller? Jag är urkass på att ställa upp ekvationer men jag får det till att talen är 2,3 och 6.
Om de två minsta talen istället skulle vara, säg 4 och 6 så skulle ju produkten bli 24 osv.
Förstår ni hur jag tänker?
Jag resonerade också som du har gjort och svarade C. Om jag inte minns fel fick jag rätt på den här frågan :)

Användarvisningsbild
Ascher
Bronspostare
Bronspostare
Inlägg: 563
Blev medlem: mån 27 mar, 2006 2:00
Ort: Göteborg

Re: Konkreta tal

Inläggav Ascher » mån 15 okt, 2007 14:31

Jag förstår hur du tänker! När sådana här uppgifter kommer brukar jag försöka med lite olika siffror och i den här uppgiften ser man ganska snabbt att det då bara finns en kombination av siffror som funkar. Det är inget ultimat sätt att lösa en NOG-uppgift men å andra sidan stöter man på max 1-2 sådana här uppgifter på ett prov...
Today is a gift, that's why we call it the present

Användarvisningsbild
DonThomaso
Silverpostare
Silverpostare
Inlägg: 1795
Blev medlem: sön 21 jan, 2007 1:00

Re: Konkreta tal

Inläggav DonThomaso » mån 15 okt, 2007 14:44

Oops apologies. Missade att det var 3 ekvationer, 3 ekvationer och 3 okända går således att lösa:

X,Y,Z
Y*Z = X
Y = X/2
Y = 1,5Z

X = 2Y
Z = Y/1,5

Sätter man in dem blir det:

Y/1,5 * Y = 2Y
Y^2/1,5 = 2Y
Y/1,5 = 2
Y = 3

Tycks ha blivit för många ord för min del denna period.

Användarvisningsbild
Ascher
Bronspostare
Bronspostare
Inlägg: 563
Blev medlem: mån 27 mar, 2006 2:00
Ort: Göteborg

Re: Konkreta tal

Inläggav Ascher » mån 15 okt, 2007 14:53

DonThomaso skrev: X,Y,Z
Y*Z = X
Y = X/2
Y = 1,5Z

X = 2Y
Z = Y/1,5
Precis så ställde jag upp det men jag är för osäker på mina ekvationer och ville inte förvirra nån i onödan... :)
Today is a gift, that's why we call it the present

Användarvisningsbild
Dagger444
Newbie-postare
Newbie-postare
Inlägg: 46
Blev medlem: ons 01 jul, 2009 11:36

Re: Konkreta tal

Inläggav Dagger444 » tis 20 okt, 2009 13:33

Så det finns undantag för regeln att man måste ha ett konkret värde? :?

Klurigt värre


cron
Intresseanmälan

Du är inte VIP-medlem. Lämna en intresseanmälan och få information helt gratis!

Dagens ord
NEOFILI
beundran för allt nytt
Nästa prov

14/4 - 2018 kl 8:10
145 dagar 5 timmar och 54 minuter kvar att förbereda sig på.

Sista anmälningsdag:
1/2 - 2018 kl 23:59

Utvalda forumtrådar
Senaste 5 forumtrådar