Sökningen fann 132 träffar
Gå till avancerad sökning
- av Jimbo
- tis 04 nov, 2014 17:27
- Kategori: XYZ
- Tråd: Ht 2014 provpass 2 uppgift 3 och 5
- Svar: 13
- Visningar: 14214
Man kan använda tänket med "sträcka = hastighet*tid". I detta fall så blir det. Uppgiften = (den totala hastigheten maskinerna jobbar)*(tiden som det tar). x = V*t. V är alltså den totala hastigheten dem tillsammans jobbar så därför kan man skriva det som att (V = 4*v), där v är den enskil...
- av Jimbo
- tis 04 nov, 2014 17:08
- Kategori: XYZ
- Tråd: Ht 2014 provpass 5 uppgift 5,6 och 10
- Svar: 13
- Visningar: 12706
Det blir inte mer komplicerat, den ekvationen är den samma som du får när du kvadrerar svarsalternativen direkt, så ifall du använder dig av den funktionen så slipper du utveckla t.ex (3,2)^2, utan du kan istället räkna med heltal. D.v.s. Att kolla vilket av svarsalternativens "andra siffra&quo...
- av Jimbo
- tis 04 nov, 2014 0:27
- Kategori: Matte
- Tråd: Hjälp
- Svar: 17
- Visningar: 11641
Du kan alltid jämföra HL med VL genom att kolla på deras konstanta och variabla termer. a(ax+b) + b = x + 1 --> (a^2 * x) + ab + b = x + 1. Konstant term i VL = (ab + b). Variabel term i VL = (a^2 * x). Konstant term i HL = (1). Variabel term i HL = (x). Sätt dem lika med varandra och viola! Tänk så...
- av Jimbo
- mån 03 nov, 2014 23:12
- Kategori: XYZ
- Tråd: Ht 2014 provpass 5 uppgift 5,6 och 10
- Svar: 13
- Visningar: 12706
På uppgift 10 så måste man se att ett "negativt tal" upphöjt till en jämn exponent alltid blir positiv och att en ojämn exponent alltid behåller talet negativt, och att 1 upphöjt till vad som helst alltid blir 1. (x^4-x^3+x^2-x)/(x-1) --> x = -1 --> (1 -(-1)+1-(-1))/(-1-1) = (1+1+1+1)/(-2)...
- av Jimbo
- mån 03 nov, 2014 23:06
- Kategori: XYZ
- Tråd: Ht 2014 provpass 5 uppgift 5,6 och 10
- Svar: 13
- Visningar: 12706
På uppgift 6 så är det nog snabbast att testa svarsalternativen, multiplicera in nämnarna går också.
16/(3x-4) = 22/(2x+3) --> 16*(2x+3) = 22*(3x-4) --> 32x + 48 = 66x - 88 -->
34x = 136 --> x = 136/34 = 8*17/(2*17) = 8/2 = 4.
- av Jimbo
- mån 03 nov, 2014 22:57
- Kategori: XYZ
- Tråd: Ht 2014 provpass 5 uppgift 5,6 och 10
- Svar: 13
- Visningar: 12706
På uppgift 5 så kan du bilda ekvationen.
(3+(a/10))^2 = 9 + 0,6a + a^2/100, och sedan sätta in andra siffran bland svarsalternativen och se vilket som stämmer bäst överens.
- av Jimbo
- mån 03 nov, 2014 22:40
- Kategori: XYZ
- Tråd: Ht 2014 provpass 2 uppgift 3 och 5
- Svar: 13
- Visningar: 14214
4/(x+1) - (x+1)/4 = 4/17 - 17/4
Undersök likheterna mellan vänsterled och högerled.
4/(x+1) = 4/17, och (x+1)/4 = 17/4.
- av Jimbo
- mån 03 nov, 2014 22:04
- Kategori: KVA
- Tråd: 2014 Ht provpass 2 uppgift 17 & 20
- Svar: 4
- Visningar: 5810
Om både z och y är 90° vad är då den tredje vinkeln?..
En vinkel i en triangel kan inte vara 0°, därför måste z vara mindre än 90°.
z = x - y, och (z,x,y) är alla positiva tal.
Och det finns inget här som säger att t.ex (x) inte kan vara större än 90°, bara vinkelsumman blir 180° totalt.
- av Jimbo
- sön 02 nov, 2014 23:00
- Kategori: XYZ
- Tråd: 2014HT XYZ Provpass 2 Uppgift 2
- Svar: 3
- Visningar: 5765
Eftersom 2*3*3 innehåller både 9 och 6, dem delar alltså en faktor på (3).
x = k*2*3*3 = k*3*6 = k*2*9 = k*18.
Ifall det hade skrivits som x = k*2*3*3*3 = k*2*27 = k*3*18, så hade mer än ett svarsalternativ stämt, vilket inte kan vara fallet.
- av Jimbo
- fre 31 okt, 2014 15:27
- Kategori: KVA
- Tråd: Provpass 5, uppgift 21 HT 2014
- Svar: 14
- Visningar: 9387
"Så är det inget tecken framför roten ur så är det ett positivt tal och således enda lösningen."
Korrekt!
- av Jimbo
- fre 31 okt, 2014 15:08
- Kategori: XYZ
- Tråd: HT14. Provpass 2 uppg 4, 10 och 11 och 3
- Svar: 6
- Visningar: 9520
Och jabberwocky det du gjorde fel på 11. var att du inte räknade med att det var
(5/11) av x som var (45/77), alltså 5x/11 = (45/77) --> x = (9/7)
- av Jimbo
- fre 31 okt, 2014 15:04
- Kategori: XYZ
- Tråd: HT14. Provpass 2 uppg 4, 10 och 11 och 3
- Svar: 6
- Visningar: 9520
På fråga 11. är svaret 9/21 = 3/7, inte 1/3.
(1/3) * (9/7) = 9/(7*3) = 3/7.
Och att säga att (1/3)*x = x/3, är korrekt, det är absolut ingen skillnad på dem.
- av Jimbo
- fre 31 okt, 2014 14:57
- Kategori: XYZ
- Tråd: Provpass 5 HT14 fråga 1, 11 och 12-
- Svar: 12
- Visningar: 9942
Problemet jabberwocky är att du räknar fel. Om vi t.ex testar om ditt räknesätt stämmer så får vi att. ((y + y^2)/2)^(1/2) = y --> y + y^2 = 2*y^2 --> y = y^2. Vilket enbart kan stämma ifall y = 1 och y = 0. Därför kan du inte bara kan dela med två? och sedan ta roten ur för att förenkla. Hade det s...