HT 2006-10-21 uppg 19 och 20

Diskussioner kring NOG-delen samt NOG-uppgifter
llejk
Newbie-postare
Newbie-postare
Inlägg: 11
Blev medlem: tis 09 okt, 2007 23:33

HT 2006-10-21 uppg 19 och 20

Inläggav llejk » ons 02 apr, 2008 21:31

Är det någon som vet varför svarsalternativ B är rätt på uppgift 19?

Användarvisningsbild
rub
Bronspostare
Bronspostare
Inlägg: 884
Blev medlem: sön 11 sep, 2005 2:00

Re: HT 2006-10-21 uppg 19 och 20

Inläggav rub » ons 02 apr, 2008 21:38

Nu kollade jag bara snabbt igenom uppgiften men jag fick antalet hemman till 59 stycken och antalet skattehemman till 20 stycken och då passar 35% bäst in

llejk
Newbie-postare
Newbie-postare
Inlägg: 11
Blev medlem: tis 09 okt, 2007 23:33

Re: HT 2006-10-21 uppg 19 och 20

Inläggav llejk » ons 02 apr, 2008 23:20

Det var NOD-delen 2006-10-21 jag menade frågan gäller omkretsen på en triangel

Användarvisningsbild
Modern
Stammis
Stammis
Inlägg: 169
Blev medlem: mån 31 mar, 2008 5:32

Re: HT 2006-10-21 uppg 19 och 20

Inläggav Modern » tor 03 apr, 2008 0:15

"ABC är en likbent triangel[...]"

Eftersom den är likbent så är sträckan AB = AC.
Pythagoras sats säger a^2 + b^2 = c^2.

I detta fall gäller då att a^2 = b^2, just eftersom den är likbent, dvs. att två sidor är lika långa.

2a^2 = c^2.
2a^2 = 50
a^2 = 25
a = 5

Användarvisningsbild
rub
Bronspostare
Bronspostare
Inlägg: 884
Blev medlem: sön 11 sep, 2005 2:00

Re: HT 2006-10-21 uppg 19 och 20

Inläggav rub » tor 03 apr, 2008 9:58

llejk skrev:Det var NOD-delen 2006-10-21 jag menade frågan gäller omkretsen på en triangel
Haha oj :) ja jag sa ju att jag bara kollade snabbt igenom ;b jag kollade såklart DTK :-P

Svartvin
Newbie-postare
Newbie-postare
Inlägg: 64
Blev medlem: tis 06 jul, 2010 18:51

Re: HT 2006-10-21 uppg 19 och 20

Inläggav Svartvin » sön 01 aug, 2010 23:52

Denna fråga förstår jag inte.


Hur vet jag vad sidan bc är för sträcka? Eftersom vi inte får någon bild, så hur kan jag då veta att bc, inte är hypotenusan,varpå vi inte kan räkna ut en till sida genom phytagoras sats? När jag ritar upp det, med a och b, vardera hörn, c i ett hörn, så ser det ut som att bc är hypotenusan. ååååååh

Man blir ju oändligt trött på hp och deras flertolkningar som frågorna ger.


Jag antog att det inte gick att veta, men att jag härvid ändå hade en sida,samt en vinkel utöver den räta,och på den vägen kan lösa uppgiften med båda påståenden genom trigonometri.

Eller man kanske bara ska lära sig utan tills att I en triangel abc, så är första bokstaven hypotenusan, och de två andra sidorna resterande :)

Så om ab= hypotenusan
BC =sida 1

hur benämns då sida två?

cb?

Ricin
Stammis
Stammis
Inlägg: 233
Blev medlem: tis 04 maj, 2010 11:50

Re: HT 2006-10-21 uppg 19 och 20

Inläggav Ricin » mån 02 aug, 2010 1:00

Svartvin skrev:Denna fråga förstår jag inte.


Hur vet jag vad sidan bc är för sträcka? Eftersom vi inte får någon bild (...)
Det finns ju en illustration till uppgiften?
HP hösten 2006, NOG - uppgift 19. 8O

Bild

Användarvisningsbild
Vigor
Bronspostare
Bronspostare
Inlägg: 521
Blev medlem: tis 26 maj, 2009 8:24

Re: HT 2006-10-21 uppg 19 och 20

Inläggav Vigor » mån 02 aug, 2010 10:10

NOG HT2006

19. ABC är en likbent triangel där vinkeln A är rät. Vilken omkrets har ABC?

(1) Vinkeln B är 45°.
(2) Sidan BC är roten ur 50 cm.

Tillräcklig information för lösningen erhålls

A i (1) men ej i (2)
B i (2) men ej i (1)
C i (1) tillsammans med (2)
D i (1) och (2) var för sig
E ej genom de båda påståendena


Vi söker omkretsen för den likbenta och rätvinkliga triangeln ABC. Alltså en halv kvadrat. Eftersom triangeln är likbent så är sidorna AB och AC lika långa. Eftersom triangeln är rätvinklig så är vinkel A 90°.

Påstående (1):
Vi får reda på att vinkel B är 45° vilket betyder att även vinkel C är 45°. Vi har ingen information om längden på någon av sidorna, således går uppgiften ej att lösa.
Ej lösning. Vi kan stryka A och D.

Påstående (2):
Vi får reda på att att BC är roten ur 50 cm. Eftersom sidorna är likbenta är de lika långa, d.v.s. AB = AC, vi kan därför kalla båda sidorna för x. Eftersom pythagoras sats är a^2 + b^2 = c^2 så kan vi göra följande uträkning:

x^2 + x^2 = c^2
2x^2 = c^2
x^2 = c^2/2
x^2 = roten ur 50^2/2
x^2 = 50/2
x^2 = 25
x = roten ur 25
x = 5
x = AB
x = AC
AB = 5
AC = 5
BC = roten ur 50

M.a.o. omkretsen går att räkna ut.
Ger lösning. Vi kan stryka C och E

Svar: Rätt svar: B i (2) men ej i (1)


Ricin: Hur gör du för att infoga bilder i inläggen?
Någon som vet om det finns "roten ur" tecken?

Användarvisningsbild
Flow91
Bronspostare
Bronspostare
Inlägg: 676
Blev medlem: fre 12 sep, 2008 23:31

Re: HT 2006-10-21 uppg 19 och 20

Inläggav Flow91 » mån 02 aug, 2010 10:16

Jag tycker att det här är en sådan uppgift där man kan se om det går och lösa uppgiften elelr ej. :P

Svartvin
Newbie-postare
Newbie-postare
Inlägg: 64
Blev medlem: tis 06 jul, 2010 18:51

Re: HT 2006-10-21 uppg 19 och 20

Inläggav Svartvin » mån 02 aug, 2010 15:26

Ricin skrev:
Svartvin skrev:Denna fråga förstår jag inte.


Hur vet jag vad sidan bc är för sträcka? Eftersom vi inte får någon bild (...)
Det finns ju en illustration till uppgiften?
HP hösten 2006, NOG - uppgift 19. 8O

Bild
jaha det fanns visst en illustrativ bild, men dock ingen sådan när jag gjorde frågan under nogprogrammet.

Ricin
Stammis
Stammis
Inlägg: 233
Blev medlem: tis 04 maj, 2010 11:50

Re: HT 2006-10-21 uppg 19 och 20

Inläggav Ricin » mån 02 aug, 2010 16:44

Vigor skrev: Ricin: Hur gör du för att infoga bilder i inläggen?
Någon som vet om det finns "roten ur" tecken?
För att infoga bilder i ditt inlägg kan du trycka på ikonen längst till vänster i rad 2 (det är den som är under ikonen för fetmarkering av text).

Om du inte hittar knappen kan du bara skriva såhär:

"[img]bildadress[/img]" utan citationstecken. Bildadressen får du reda på när du laddar upp bilden på sidor som tillhandahåller sådan tjänst. Jag använder http://imageshack.us

Rot-tecknet kan du få fram genom att öppna programmet "teckenuppsättning", brukar finnas inne bland program -> tillbehör -> systemverktyg. Om du inte orkar leta i listan kan du välja "avancerad vy" och sedan söka efter "square root". Mycket jobb för så lite... Hehe. Enklare att bara skriva "SQRT"

Edit: Ser dock att rot-tecknet inte kan visas korrekt på sidan (iaf inte på min dator). Blir bara frågetecken här.

? ? ? <---- rot-tecken.

Användarvisningsbild
Vigor
Bronspostare
Bronspostare
Inlägg: 521
Blev medlem: tis 26 maj, 2009 8:24

Re: HT 2006-10-21 uppg 19 och 20

Inläggav Vigor » mån 02 aug, 2010 19:49

Tack!
Bild

kajjki
Newbie-postare
Newbie-postare
Inlägg: 16
Blev medlem: tis 25 jan, 2011 16:56

Re: HT 2006-10-21 uppg 19 och 20

Inläggav kajjki » fre 01 apr, 2011 17:29

Kort och gott. Bara man kan längden på en sträcka i en sådan rätvinklig kan man räkna ut omkretsen/arean.


cron
Intresseanmälan

Du är inte VIP-medlem. Lämna en intresseanmälan och få information helt gratis!

Dagens ord
NEOFILI
beundran för allt nytt
Nästa prov

14/4 - 2018 kl 8:10
145 dagar 5 timmar och 37 minuter kvar att förbereda sig på.

Sista anmälningsdag:
1/2 - 2018 kl 23:59

Utvalda forumtrådar
Senaste 5 forumtrådar