HT 2012 Provpass 1 uppg 25, 27, 28

Diskussioner kring NOG-delen samt NOG-uppgifter
medicineman
Newbie-postare
Newbie-postare
Inlägg: 15
Blev medlem: tor 07 apr, 2011 21:40

HT 2012 Provpass 1 uppg 25, 27, 28

Inläggav medicineman » ons 19 dec, 2012 17:23

25. I en hiss som startar från bottenvåningen är medelåldern på personerna i hissen 30 år.
Vid nästa stopp, på första våningen, kliver en person ur hissen och en person kliver på.
Vad är medelåldern på personerna i hissen när den lämnar första
våningen?

(1) Den som kliver på hissen vid första våningen är 10 år äldre än den som kliver ur.

(2) Det är fem personer i hissen när den startar från bottenvåningen.



27. ABC är en triangel. Vinkeln ABC delas i tre lika stora vinklar x. Hur stor är
vinkeln y?

(1) Triangeln ABC är liksidig.

(2) Alla sidor i triangeln ABC är 6 cm.



28. I en fågeldamm finns det änder och svanar. Vad är kvoten mellan antalet änder
och antalet svanar?

(1) Svanarna är 50 färre än hälften av antalet änder.

(2) Antalet svanar är 3/11 av antalet änder.

Moustache
Newbie-postare
Newbie-postare
Inlägg: 17
Blev medlem: mån 06 aug, 2012 13:59

Re: HT 2012 Provpass 1 uppg 25, 27, 28

Inläggav Moustache » ons 19 dec, 2012 17:51

Hej!

Uppgift 25

Grundinformationen ger oss att medelåldern på ett visst antal personer i hissen är 30 år. Således: x personer * 30 år = y år (summan av antalet år personerna är). Vi vill ha reda på medelåldern i hissen efter första våningen, alltså efter att en person har lämnat och en person har gått in i hissen.

Påstående (1) ger oss: den som kliver på hissen är 10 år äldre än den som kliver ur. Vi kan dra slutsatsen att det inte ger oss något relevant eftersom vi inte vet något om antalet personer i hissen. Svarsalternativ A och D kan strykas.

Påstående (2) ger oss: antalet personer i hissen är fem när den startar från bottenvåningen. Detta ger oss: 5 personer * 30 år = 150 år, alltså är alla personers sammanlagda ålder i hissen 150 år när den startar från botten. Men bara påstående (2) ger oss inte tillräckligt, eftersom vi inte vet någonting om vad som hände vid våning 1. Alternativ B kan strykas.

Påstående (1) och (2) tillsammans ger oss: den sammanlagda åldern kommer öka med 10 år när hissen lämnar våning ett, eftersom den personen som kliver in är 10 år äldre än den som klev ut. 150 + 10 = 160 <- nya summan av personernas åldrar. Medelåldern kan räknas ut genom 160/5. Svaret är C.

Uppgift 27

Egentligen krävs bilden till den här uppgiften för att kunna förklara, men jag kör på ändå.

Grundinformationen ger oss att vinkeln B har delats in i tre lika stora vinklar där varje vinkel motsvarar x. Vi vill ha reda på vinkeln y.

Påstående (1) ger oss: den stora triangeln är liksidig, varje vinkel i ABC är alltså 60 grader. Det innebär att varje x-vinkel motsvarar 20 grader, eftersom B-vinkeln är 60 grader och 60/3 = 20 (den var ju indelad i tre x). Triangeln som innehåller vinkeln y är likbent och således kan vinkeln y räknas ut (80 grader om jag inte kommer ihåg fel). Vi kan lösa uppgiften med hjälp av påståendet, svarsalternativ B och E kan strykas.

Påstående (2) ger oss: egentligen samma sak som påstående (1) fast på ett annat sätt. Är alla sidor hos triangeln lika stora måste också vinklarna vara lika stora, annars går det inte ihop. Uppgiften kan lösas och svaret blir således D.

Uppgift 28

Grundinformationen ger oss inte mer än att det finns ett antal änder och svanar i en damm och vi vill ha reda på förhållandet mellan dessa. Detta är en simpel uppgift, bara man kommer ihåg vad "kvot" innebär.

Påstående (1) ger oss: svanarna är till antalet 50 färre än änderna. Av denna information kan vi INTE lösa uppgiften, eftersom antalet svanar lika gärna kan vara 1 miljon som 500, uppgiften kan inte lösas. Svarsalternativ A och D kan strykas.

Påstående (2) ger oss: antalet svanar motsvarar 3/11 av antalet änder. Detta ger oss i princip svaret rakt av. Förhållandet mellan antalet svanar och änder är 3:8. Uppgiften kan lösas och svaret är B.

Användarvisningsbild
ak91
Newbie-postare
Newbie-postare
Inlägg: 64
Blev medlem: sön 18 mar, 2012 20:53

Re: HT 2012 Provpass 1 uppg 25, 27, 28

Inläggav ak91 » fre 21 dec, 2012 21:08

Moustache skrev:Hej!

Uppgift 25

Grundinformationen ger oss att medelåldern på ett visst antal personer i hissen är 30 år. Således: x personer * 30 år = y år (summan av antalet år personerna är). Vi vill ha reda på medelåldern i hissen efter första våningen, alltså efter att en person har lämnat och en person har gått in i hissen.

Påstående (1) ger oss: den som kliver på hissen är 10 år äldre än den som kliver ur. Vi kan dra slutsatsen att det inte ger oss något relevant eftersom vi inte vet något om antalet personer i hissen. Svarsalternativ A och D kan strykas.

Påstående (2) ger oss: antalet personer i hissen är fem när den startar från bottenvåningen. Detta ger oss: 5 personer * 30 år = 150 år, alltså är alla personers sammanlagda ålder i hissen 150 år när den startar från botten. Men bara påstående (2) ger oss inte tillräckligt, eftersom vi inte vet någonting om vad som hände vid våning 1. Alternativ B kan strykas.

Påstående (1) och (2) tillsammans ger oss: den sammanlagda åldern kommer öka med 10 år när hissen lämnar våning ett, eftersom den personen som kliver in är 10 år äldre än den som klev ut. 150 + 10 = 160 <- nya summan av personernas åldrar. Medelåldern kan räknas ut genom 160/5. Svaret är C.

Uppgift 27

Egentligen krävs bilden till den här uppgiften för att kunna förklara, men jag kör på ändå.

Grundinformationen ger oss att vinkeln B har delats in i tre lika stora vinklar där varje vinkel motsvarar x. Vi vill ha reda på vinkeln y.

Påstående (1) ger oss: den stora triangeln är liksidig, varje vinkel i ABC är alltså 60 grader. Det innebär att varje x-vinkel motsvarar 20 grader, eftersom B-vinkeln är 60 grader och 60/3 = 20 (den var ju indelad i tre x). Triangeln som innehåller vinkeln y är likbent och således kan vinkeln y räknas ut (80 grader om jag inte kommer ihåg fel). Vi kan lösa uppgiften med hjälp av påståendet, svarsalternativ B och E kan strykas.

Påstående (2) ger oss: egentligen samma sak som påstående (1) fast på ett annat sätt. Är alla sidor hos triangeln lika stora måste också vinklarna vara lika stora, annars går det inte ihop. Uppgiften kan lösas och svaret blir således D.

Uppgift 28

Grundinformationen ger oss inte mer än att det finns ett antal änder och svanar i en damm och vi vill ha reda på förhållandet mellan dessa. Detta är en simpel uppgift, bara man kommer ihåg vad "kvot" innebär.

Påstående (1) ger oss: svanarna är till antalet 50 färre än änderna. Av denna information kan vi INTE lösa uppgiften, eftersom antalet svanar lika gärna kan vara 1 miljon som 500, uppgiften kan inte lösas. Svarsalternativ A och D kan strykas.

Påstående (2) ger oss: antalet svanar motsvarar 3/11 av antalet änder. Detta ger oss i princip svaret rakt av. Förhållandet mellan antalet svanar och änder är 3:8. Uppgiften kan lösas och svaret är B.
Men även om man ser att triangeln är likbent. Hur kan man veta att den är det då det inte står att den är det.

lillycatjaw
Newbie-postare
Newbie-postare
Inlägg: 20
Blev medlem: fre 22 feb, 2013 16:33

Re: HT 2012 Provpass 1 uppg 25, 27, 28

Inläggav lillycatjaw » tor 14 mar, 2013 16:30

Moustache skrev:
Uppgift 28

Grundinformationen ger oss inte mer än att det finns ett antal änder och svanar i en damm och vi vill ha reda på förhållandet mellan dessa. Detta är en simpel uppgift, bara man kommer ihåg vad "kvot" innebär.

Påstående (1) ger oss: svanarna är till antalet 50 färre än änderna. Av denna information kan vi INTE lösa uppgiften, eftersom antalet svanar lika gärna kan vara 1 miljon som 500, uppgiften kan inte lösas. Svarsalternativ A och D kan strykas.

Påstående (2) ger oss: antalet svanar motsvarar 3/11 av antalet änder. Detta ger oss i princip svaret rakt av. Förhållandet mellan antalet svanar och änder är 3:8. Uppgiften kan lösas och svaret är B.
Borde det inte vara så att de förhåller sig som 3:11 eftersom svanarna är 3/11 av änderna, och inte 3/11 av antalet sammanlagda svanar och änder?

Undrar dessutom rent specifikt hur det då skulle se ut när man räknar ut kvoten?

(3/11)*Ä / (11/11)*Ä

Eller?

Användarvisningsbild
Sweegone
Före detta VIP-Medlem
Före detta VIP-Medlem
Inlägg: 205
Blev medlem: fre 15 jun, 2012 23:22

Re: HT 2012 Provpass 1 uppg 25, 27, 28

Inläggav Sweegone » fre 05 apr, 2013 16:35

Någon som vet hur man ställer upp ekvationen i fråga 28 med hjälp av (2) ?
Det står 3/11 av ändar, inte av totalet.
Är där då 11/11 ändar ?
"Kunskapens rot är bitter, men dess frukter äro söta"

Användarvisningsbild
Sweegone
Före detta VIP-Medlem
Före detta VIP-Medlem
Inlägg: 205
Blev medlem: fre 15 jun, 2012 23:22

Re: HT 2012 Provpass 1 uppg 25, 27, 28

Inläggav Sweegone » fre 05 apr, 2013 16:41

Isåfall blir det 121/33, kvoten blir ca. 6.5 , harjag rätt ?
"Kunskapens rot är bitter, men dess frukter äro söta"

Användarvisningsbild
adriankungen
Newbie-postare
Newbie-postare
Inlägg: 33
Blev medlem: mån 24 sep, 2012 16:42

Re: HT 2012 Provpass 1 uppg 25, 27, 28

Inläggav adriankungen » tor 19 sep, 2013 16:59

Nej. Det är dessvärre fel.

Påstående (2) ger oss: antalet svanar motsvarar 3/11 av antalet änder.

Antalet Änder = Ä
Antalet svanar = S

Ä/S = kvot

S = 3/11 av Ä

Ä = 11/11 = 1 = 1/1

1/1 / 3/11 = 11/3

kvtoen av 11/3 = 3.66666

Till exempel
Anta att det är 110 Änder

Antal svanar = 3/11 av 110 = 30

110/30=3,6666

Längesedan du fråga men om någon likt jag också skulle undra hur man kom fram till det så finns det här :)

Användarvisningsbild
knugg
Newbie-postare
Newbie-postare
Inlägg: 78
Blev medlem: tis 17 apr, 2012 1:42
Kontakt:

Re: HT 2012 Provpass 1 uppg 25, 27, 28

Inläggav knugg » sön 12 jun, 2016 4:38

Jag skulle vilja ge ett kanske snabbare och lattare losningsalternativ till nr 25.

Tank att 10 ar okningen, eftersom vi adderar allas aldrar kan vi ocksa fordela 10 pa 5 personer : att den personen som kom in i hissen sist ar 10 ar aldre innebar ocksa att denne okar "aldern per person" med 10/5=2ar per person. 30 + 2 = 32ar per person .

Den nya medelaldern ar 32.

Info 1 ger oss att personen ar 10 ar aldre.

Info 2 ger oss hur manga personer det ar i hissen.

Bada informationerna ar nodvandiga (Svar: C) for att ta reda pa hur mycket medelaldern okar per person. (Honestly sa ar ovanstaende svar utmarkt, detta ar bara ett alternativ till mindre ekvationer och krux - enligt mig)
Just do it


cron
Intresseanmälan

Du är inte VIP-medlem. Lämna en intresseanmälan och få information helt gratis!

Dagens ord
GAUCHO
boskapsskötare på Pampas
Nästa prov

14/4 - 2018 kl 8:10
141 dagar 16 timmar och 51 minuter kvar att förbereda sig på.

Sista anmälningsdag:
1/2 - 2018 kl 23:59

Utvalda forumtrådar
Senaste 5 forumtrådar