NOG Uppgift 8 HT 09

Diskussioner kring NOG-delen samt NOG-uppgifter
Användarvisningsbild
.eva
Stammis
Stammis
Inlägg: 196
Blev medlem: ons 07 jan, 2009 17:04

NOG Uppgift 8 HT 09

Inläggav .eva » tor 10 dec, 2009 12:01

Till en damfotbollsmatch såldes enbart sittplatsbiljetter och ståplatsbiljetter. Hur många ståplatsbiljetter såldes om sittplatsbiljetterna kostade 80 kr styck?

(1) Sammanlagt såldes biljetter för 27 220 kr.

(2) Ståplatsbiljetterna var 50 kr billigare än sittplatsbiljetterna.
Tillräcklig information för lösningen erhålls

A i (1) men ej i (2)
B i (2) men ej i (1)
C i (1) tillsammans med (2)
D i (1) och (2) var för sig
E ej genom de båda påståendena
Rätt svar: E

Vad jag undrar är: hur kan man veta detta säkert? (2) ger att sittplatsbiljetterna kostade 30 kr/st. Eftersom 50 och 30 inte går jämt upp i varandra skulle det väl teoretiskt sett kunna vara möjligt att bara en specifik kombination resulterar i exakt 27 220 kr?

Användarvisningsbild
empezar
Platinapostare
Platinapostare
Inlägg: 6324
Blev medlem: tis 24 okt, 2006 2:00

Re: NOG Uppgift 8 HT 09

Inläggav empezar » tor 10 dec, 2009 12:51

x = sittplatser
y = ståplatser
z = ståplatsbiljettskostnad

(1) ger 80x + zy = 27220

Tre obekanta, en ekvation => ej lösbar.

(2) ger z = 30

Tre obekanta, en ekvation => ej lösbar.

(1) + (2) ger 80x + 30y = 27220

Tre obekanta, två ekvationer => ej lösbar.

Vi behöver en till ekvation för att lösa uppgiften.

Det finns många lösningar till denna, eftersom 8 ståplatser motsvarar kostnaden av 3 sittplatser (30*8 = 80*3).

Exempel:

80*338 + 30*6 = 27220
80*335 + 30*14 = 27220
80*332 + 30*22 = 27220

Och så vidare...

Det finns alltså väldigt många lösningar, så svaret är E.

När man räknar NOG räcker det med att komma fram till att antalet ekvationer inte är lika många/fler än antalet okända variablar för att konstatera att svaret är E. Det finns vissa undantagsfall som kan vara svåra att känna igen, men om man går efter denna metod kommer man få minst 19-20 rätt på varje NOG-prov. När man blivit tillräckligt snabb för att ha 10-20 minuter till godo när man är färdig med NOG-provet, kan man gå igenom de uppgifter som verkar lite kluriga, och på så sätt säkra 22 poäng.
Senast redigerad av 2 empezar, redigerad totalt 0 gång.

Användarvisningsbild
Homeros
Stammis
Stammis
Inlägg: 151
Blev medlem: fre 23 mar, 2007 1:00

Re: NOG Uppgift 8 HT 09

Inläggav Homeros » tor 10 dec, 2009 12:58

.eva skrev:
Till en damfotbollsmatch såldes enbart sittplatsbiljetter och ståplatsbiljetter. Hur många ståplatsbiljetter såldes om sittplatsbiljetterna kostade 80 kr styck?

(1) Sammanlagt såldes biljetter för 27 220 kr.

(2) Ståplatsbiljetterna var 50 kr billigare än sittplatsbiljetterna.
Tillräcklig information för lösningen erhålls

A i (1) men ej i (2)
B i (2) men ej i (1)
C i (1) tillsammans med (2)
D i (1) och (2) var för sig
E ej genom de båda påståendena
Rätt svar: E

Vad jag undrar är: hur kan man veta detta säkert? (2) ger att sittplatsbiljetterna kostade 30 kr/st. Eftersom 50 och 30 inte går jämt upp i varandra skulle det väl teoretiskt sett kunna vara möjligt att bara en specifik kombination resulterar i exakt 27 220 kr?

EDIT: Läs inlägget ovan så får du mer utförligt ;)


Tror du missade på andra premissen, (2) säger oss att ståplatserna kostade 80-50= 30 kr/st och det är sittplatserna som kostar 80 kr, fås i början.

1) ger oss inget konkret då vi inte vet något om själva antalet biljetter utan bara får summan pengar de genererar.

2) ger oss att sittplatserna kostade 80 kr och ståplatserna kostade 30 kr. men vi vet inget om antal eller total kostnad

Lägger man ihop de två alternativen får vi de olika biljettkostnaderna samt hur mycket pengar de totalt bringar in. Dock står det ingenting om hur många biljetter som säljs,
det skulle kunna vara så att de endast sålde: 2 st sittplatser á 160 kr och 902 st ståplatser á 30 kr ELLER 4 st sittplatser á 340 kr och 896 ståplatser a 30 kr.

Därför ska det vara E :-P

Användarvisningsbild
.eva
Stammis
Stammis
Inlägg: 196
Blev medlem: ons 07 jan, 2009 17:04

Re: NOG Uppgift 8 HT 09

Inläggav .eva » tor 10 dec, 2009 13:08

Tack empezar för ett mycket pedagogiskt svar!
empezar skrev:eftersom 8 ståplatser motsvarar kostnaden av 3 sittplatser (30*8 = 80*3)
...förklarade mitt huvudbry galant. Siffrorna går visst jämt upp. Har fortfarande inte riktigt greppat hur man kan vara helt säker på att de gör det, men jag antar att jag får repetera lite gymnasiematte helt enkelt.

Angående "fuskmetoden" med att räkna antalet ekvationer undrar jag om undantagen du nämner följer någon viss struktur? Har du något exempel på ett sådant undantag?



Homeros, jag råkade skriva fel bara - ståplatser menade jag givetvis. ;)

Användarvisningsbild
empezar
Platinapostare
Platinapostare
Inlägg: 6324
Blev medlem: tis 24 okt, 2006 2:00

Re: NOG Uppgift 8 HT 09

Inläggav empezar » tor 10 dec, 2009 15:01

.eva skrev:Angående "fuskmetoden" med att räkna antalet ekvationer undrar jag om undantagen du nämner följer någon viss struktur? Har du något exempel på ett sådant undantag?
Det är långt ifrån en "fuskmetod" även med citationstecken :) Det är så här man löser ekvationer med ekvationssystem, och det är det bästa sättet att lösa NOG-uppgifter, enligt mig. Vissa föredrar att "tänka logiskt", dvs att deras mattehjärnor direkt ser om uppgiften går att lösa eller inte - men den metoden fungerar inte för alla. Att lösa uppgifterna med ekvationssystem är något alla kan lära sig (förutom de som lider av dyskalki).

Undantaget är när du får två ekvationer som ser ut att vara olika ekvationer, men som går att skriva om så att de blir likadana. Jag kan återkomma med exempel senare i dag.

roinom
Stammis
Stammis
Inlägg: 387
Blev medlem: ons 25 mar, 2009 19:10

Re: NOG Uppgift 8 HT 09

Inläggav roinom » tor 10 dec, 2009 15:08

Till exempel en uppgift som lyder i stil med med a = b + c, vilka är talen?

Sen får man veta i något av påståendena: b = a - c, sen tror man att det är olika ekvationer trots att det som kommer ur påståendet kan skrivas om till ursprungsekvationen: a = b + c.

Användarvisningsbild
empezar
Platinapostare
Platinapostare
Inlägg: 6324
Blev medlem: tis 24 okt, 2006 2:00

Re: NOG Uppgift 8 HT 09

Inläggav empezar » tor 10 dec, 2009 16:26

haiphon skrev:Sen får man veta i något av påståendena: b = a - c, sen tror man att det är olika ekvationer trots att det som kommer ur påståendet kan skrivas om till ursprungsekvationen: a = b + c.
Det var ett väldigt enkelt exempel :)

Det fanns någon uppgift här i forumet för ett tag sedan där man var tvungen att räkna ganska mycket innan man såg att det var samma ekvation.

Användarvisningsbild
.eva
Stammis
Stammis
Inlägg: 196
Blev medlem: ons 07 jan, 2009 17:04

Re: NOG Uppgift 8 HT 09

Inläggav .eva » tor 10 dec, 2009 17:10

Nej fusk är det ju inte - därav citationstecknen. Men det är en metod som kanske inte ger en lika djup förståelse för problemets karaktär som om man skulle lösa det manuellt. En bra metod verkar det dock utan tvekan vara!

Så med undantag menade du ekvationer som är (eller potentiellt kan bli) exakt likadana. Jag antog att du menade i grunden olika ekvationer, men där finns inga undantag.. eller?

Användarvisningsbild
empezar
Platinapostare
Platinapostare
Inlägg: 6324
Blev medlem: tis 24 okt, 2006 2:00

Re: NOG Uppgift 8 HT 09

Inläggav empezar » tor 10 dec, 2009 17:11

.eva skrev:Så med undantag menade du ekvationer som är (eller potentiellt kan bli) exakt likadana. Jag antog att du menade i grunden olika ekvationer, men där finns inga undantag.. eller?
Nej, då finns inga undantag.

chil
Newbie-postare
Newbie-postare
Inlägg: 4
Blev medlem: sön 25 okt, 2009 21:41
Ort: utomlands

Re: NOG Uppgift 8 HT 09

Inläggav chil » fre 11 dec, 2009 11:32

Men tar samma uppgift, fast med 110 kr i stället för 27220 kr: då blir det C. Diofantiska ekvationer kan ha sina överraskningar. :)

Jag vet dock inte om en sådan uppgift skulle verkligen kunna dyka upp i högskoleprovet.

Användarvisningsbild
empezar
Platinapostare
Platinapostare
Inlägg: 6324
Blev medlem: tis 24 okt, 2006 2:00

Re: NOG Uppgift 8 HT 09

Inläggav empezar » fre 11 dec, 2009 11:58

chil skrev:Men tar samma uppgift, fast med 110 kr i stället för 27220 kr: då blir det C. Diofantiska ekvationer kan ha sina överraskningar. :)

Jag vet dock inte om en sådan uppgift skulle verkligen kunna dyka upp i högskoleprovet.
Du menar att det går att räkna ut den uppgiften (med 110 kr), eftersom det bara finns en lösning, men att den inte går att räkna ut med ekvationssystem?

Såvida det inte går att prova sig fram på ungefär två minuter kommer uppgiften inte komma med på det riktiga provet, nej. Då skulle det ju bli en gissningslek.

Det finns vissa uppgifter som jag tycker är svåra att skriva upp som ekvationer, som man (jag) lättast räknar ut genom att prova olika möjliga uträkningar. Oftast har det med ålder att göra (där det är orimligt att någon är t ex >120 år gammal).

roinom
Stammis
Stammis
Inlägg: 387
Blev medlem: ons 25 mar, 2009 19:10

Re: NOG Uppgift 8 HT 09

Inläggav roinom » fre 11 dec, 2009 12:14

empezar skrev:
Det var ett väldigt enkelt exempel :)
Jo, det var tanken, orkade inte fundera något så tog bara ett lätt exempel så TS skulle förstå vilken typ av undantag som kan förekomma. Fast jag tror jag vet vilken uppgift du tänker på när man fick flytta om rätt rejält för att sedan kunna konstatera att båda fallen gav samma utfall så att säga. Tror det förekom en sådan uppgift sedan NOG om jag kommer ihåg rätt :)

Användarvisningsbild
empezar
Platinapostare
Platinapostare
Inlägg: 6324
Blev medlem: tis 24 okt, 2006 2:00

Re: NOG Uppgift 8 HT 09

Inläggav empezar » fre 11 dec, 2009 12:37

Såna här uppgifter går inte att lösa med ekvationssystem:

http://www.hpguiden.se/forumet/topic/944

gestir
Newbie-postare
Newbie-postare
Inlägg: 21
Blev medlem: lör 19 jan, 2013 23:35

Re: NOG Uppgift 8 HT 09

Inläggav gestir » tor 14 feb, 2013 15:51

När man räknar NOG räcker det med att komma fram till att antalet ekvationer inte är lika många/fler än antalet okända variablar för att konstatera att svaret är E. Det finns vissa undantagsfall som kan vara svåra att känna igen, men om man går efter denna metod kommer man få minst 19-20 rätt på varje NOG-prov. När man blivit tillräckligt snabb för att ha 10-20 minuter till godo när man är färdig med NOG-provet, kan man gå igenom de uppgifter som verkar lite kluriga, och på så sätt säkra 22 poäng.
Väldigt bra sagt! Finns det någon guide för hur man snabbt hittar det som brukar kallas "oberoende ekvationer" och "okända variabler"? Jag vet inte riktigt vad som menas med detta.

Börjar man bara med att ta alla okända men relevanta fakta och kalla dem för x,y och z? Hur vet man vad som är relevanta fakta?


cron
Intresseanmälan

Du är inte VIP-medlem. Lämna en intresseanmälan och få information helt gratis!

Dagens ord
CESSION
överlåtelse (av fordran utan gäldenärs medverkan); konkurs
Nästa prov

14/4 - 2018 kl 8:10
147 dagar 7 timmar och 7 minuter kvar att förbereda sig på.

Sista anmälningsdag:
1/2 - 2018 kl 23:59

Utvalda forumtrådar