VT-08 uppg 21

Diskussioner kring NOG-delen samt NOG-uppgifter
sannas_88
Newbie-postare
Newbie-postare
Inlägg: 4
Blev medlem: fre 22 aug, 2008 16:58

VT-08 uppg 21

Inläggav sannas_88 » ons 22 okt, 2008 13:31

Figuren visar en rät linje med riktningskoefficient k. Punkterna A, B och C ligger på denna linje. Avståndet mellan A och B är samma som avståndet mellan B och C. Hur många längdenheter är sträckan AC?

1. Punkterna A och B har koordinaterna (3,4) respektive (6,6).

2. Punkten C har koordinaterna (9,8) och linjen har riktningskoefficienten k = 2/3

Jag har totalt glömt bort hur man räknar avstånd i linjära funktioner! Kan någon snäll hjälpa mig?

Användarvisningsbild
Pretender
Newbie-postare
Newbie-postare
Inlägg: 45
Blev medlem: tor 10 jul, 2008 8:53

Re: VT-08 uppg 21

Inläggav Pretender » ons 22 okt, 2008 13:43

Du behöver inte använda linjära funktioner för att lösa denna uppgiften, använd Pythagoras sats.

Rita in en rätvinklig triangel i koordinatsystemet mellan punkterna A och B. I påstående (1) får du ju reda på avståndet mellan punkterna i både x- och y-led, alltså kan du räkna ut avståndet mellan punkterna (sträckan AB) och eftersom AB = BC så kan du svara på frågan mha. påstående (1).

I påstående (2) får vi endast en punkt (C) och det räcker inte till för att räkna ut avståndet mellan punkterna. Vi får reda på riktningskoefficienten, men det ger endast möjligheten att beräkna m, dvs. när linjen skär y-axeln. Alltså är svaret A.

/

sannas_88
Newbie-postare
Newbie-postare
Inlägg: 4
Blev medlem: fre 22 aug, 2008 16:58

Re: VT-08 uppg 21

Inläggav sannas_88 » ons 22 okt, 2008 13:49

ja såklart! Tack för ett snabbt svar!

Användarvisningsbild
chiefen
Newbie-postare
Newbie-postare
Inlägg: 44
Blev medlem: mån 26 maj, 2008 18:25
Ort: Stockholm
Kontakt:

Re: VT-08 uppg 21

Inläggav chiefen » mån 09 mar, 2009 22:02

Jag hänger inte riktig med. Är alltså längdenheterna mellan A och B 2^2 + 3^3 = 13? Eller tänker jag fel.

lello
Newbie-postare
Newbie-postare
Inlägg: 54
Blev medlem: tis 09 dec, 2008 16:56

Re: VT-08 uppg 21

Inläggav lello » mån 09 mar, 2009 22:18

chiefen skrev:Jag hänger inte riktig med. Är alltså längdenheterna mellan A och B 2^2 + 3^3 = 13? Eller tänker jag fel.


Pythagorasats: a^2 + b^2 = c^2 dvs. Roten ur(2^2+3^2)=c
Så det du skrev fast med roten ur på 13.

Användarvisningsbild
chiefen
Newbie-postare
Newbie-postare
Inlägg: 44
Blev medlem: mån 26 maj, 2008 18:25
Ort: Stockholm
Kontakt:

Re: VT-08 uppg 21

Inläggav chiefen » tis 10 mar, 2009 3:43

lello skrev:
chiefen skrev:Jag hänger inte riktig med. Är alltså längdenheterna mellan A och B 2^2 + 3^3 = 13? Eller tänker jag fel.


Pythagorasats: a^2 + b^2 = c^2 dvs. Roten ur(2^2+3^2)=c
Så det du skrev fast med roten ur på 13.
Borde inte (2) funka då också, eftersom det är just riktningskoefficienten som jag gör så med? C är (9,8), k säger att B finns två enheter nedåt och tre vänster osv? Från det får jag 2^2 + 3^3.

Jag är förstås på det klara med att svaret är A, men jag vill veta varför jag tänker fel. :)

Användarvisningsbild
chiefen
Newbie-postare
Newbie-postare
Inlägg: 44
Blev medlem: mån 26 maj, 2008 18:25
Ort: Stockholm
Kontakt:

Re: VT-08 uppg 21

Inläggav chiefen » mån 16 mar, 2009 20:43

Ingen som vill svara? :(

Användarvisningsbild
Paradisia
Stammis
Stammis
Inlägg: 422
Blev medlem: sön 28 okt, 2007 15:30

Re: VT-08 uppg 21

Inläggav Paradisia » mån 16 mar, 2009 20:59

Vet inte riktigt om jag upfattade ditt resonemang korrekt men som jag förstår det då menar du att man borde kunna räkna ut var ounkt B ligger mha (2). Detta går dock inte även fast vi har k eftersom B liksom A skulle kunna ligga flera steg bort. Det är egentligen inget som säger att A och B ska ligga i 1:a kvadranten de skulle ju lika gärna ligga längre bort eller mer förskjutna fast ändå i !:a kvadranten. Om jag minns det rätt så stor det ngt i stil med att bilden inte nödvändigtvis visar hur det ser ut i verkligheten utan att den bara ska försöka illustrera uppgiften.

Hoppas att jag tolkade frågan rätt...

Användarvisningsbild
chiefen
Newbie-postare
Newbie-postare
Inlägg: 44
Blev medlem: mån 26 maj, 2008 18:25
Ort: Stockholm
Kontakt:

Re: VT-08 uppg 21

Inläggav chiefen » tis 17 mar, 2009 19:43

Paradisia skrev:Vet inte riktigt om jag upfattade ditt resonemang korrekt men som jag förstår det då menar du att man borde kunna räkna ut var ounkt B ligger mha (2). Detta går dock inte även fast vi har k eftersom B liksom A skulle kunna ligga flera steg bort. Det är egentligen inget som säger att A och B ska ligga i 1:a kvadranten de skulle ju lika gärna ligga längre bort eller mer förskjutna fast ändå i !:a kvadranten. Om jag minns det rätt så stor det ngt i stil med att bilden inte nödvändigtvis visar hur det ser ut i verkligheten utan att den bara ska försöka illustrera uppgiften.

Hoppas att jag tolkade frågan rätt...
Såklart! Gick i fällan där. :mad:

Charlie_Chicken
Newbie-postare
Newbie-postare
Inlägg: 4
Blev medlem: sön 01 jun, 2008 22:31

Re: VT-08 uppg 21

Inläggav Charlie_Chicken » tor 26 aug, 2010 14:07

Hur gör man om man vill räkna ut detta tal genom räta linjens ekvation. Har inte riktigt fått grepp om den.

Användarvisningsbild
sebkar2
Stammis
Stammis
Inlägg: 175
Blev medlem: lör 28 jun, 2014 16:20

Re: VT-08 uppg 21

Inläggav sebkar2 » tor 23 okt, 2014 17:17

Vet att denna har diskuterats förut, ändå känner jag att den går att lösas med både inform från 1 och 2 var för sig, alltså D.

Inform från 1, ger oss två punkter på linjen. A samt B, plus k värdet. Samt att längden mellan dessa är 1/3 av det totala, vilket gör att vi kan räkna ut den totala längden.

Inform från 2, ger oss också två punkter, samt k värdet. Vi får dock inte punkt A och B utan där linjen skär y-axeln samt punkten C. I detta fall slipper man ju att multiplicera med 3, då man får hela sträckan direkt genom pytagoras sats? Då vi har två punkter kan man ju räkna ut båda båda kateter och därmed hypotenusan..? rätta mig gärna om jag har fel, vilket jag säkert har.

Jimbo
Stammis
Stammis
Inlägg: 134
Blev medlem: tor 20 feb, 2014 20:23

Re: VT-08 uppg 21

Inläggav Jimbo » tor 23 okt, 2014 17:42

Ifrån informationen i 2. så får du inget nyttigt eftersom man inte vet vart på linjen som A och B ligger, dem kan vara vars som helst bara dem följer funktionen, och eftersom att vi kan placera dem var som helst så förändrar vi även avståndet AC, vilket i sig säger att vi omöjligt kan ta reda på sträckan AC med enbart denna information.

När du beräknar sträckan mellan t.ex A och C så blir det pythagoras sats mellan dessa punkter inte mellan C och skärningspunkten för linjen.

Keyser_soze
Stammis
Stammis
Inlägg: 473
Blev medlem: mån 20 jan, 2014 12:40

Re: VT-08 uppg 21

Inläggav Keyser_soze » tor 23 okt, 2014 17:45

Man måste väl veta hur 1 av punkterna ligger i relation till c?

Ok såg nu att jimbo gav ett bättre svar lol.

Användarvisningsbild
sebkar2
Stammis
Stammis
Inlägg: 175
Blev medlem: lör 28 jun, 2014 16:20

Re: VT-08 uppg 21

Inläggav sebkar2 » tor 23 okt, 2014 17:57

Jimbo skrev:Ifrån informationen i 2. så får du inget nyttigt eftersom man inte vet vart på linjen som A och B ligger, dem kan vara vars som helst bara dem följer funktionen, och eftersom att vi kan placera dem var som helst så förändrar vi även avståndet AC, vilket i sig säger att vi omöjligt kan ta reda på sträckan AC med enbart denna information.

När du beräknar sträckan mellan t.ex A och C så blir det pythagoras sats mellan dessa punkter inte mellan C och skärningspunkten för linjen.
Tack, såg det nu. Tillfälligt hjärnsläpp, måste vara min förkylning som spökar i hjärnan för mig.... ;)


cron
Intresseanmälan

Du är inte VIP-medlem. Lämna en intresseanmälan och få information helt gratis!

Dagens ord
NEOFILI
beundran för allt nytt
Nästa prov

14/4 - 2018 kl 8:10
145 dagar 5 timmar och 41 minuter kvar att förbereda sig på.

Sista anmälningsdag:
1/2 - 2018 kl 23:59

Utvalda forumtrådar
Senaste 5 forumtrådar